Innovation for Our Energy Future

Renewable Energy Technology Opportunities: Responding to Global Energy Challenges

Presented at Clean-Tech Investors Summit

January 23, 2007

Dan E. Arvizu

Director, National Renewable Energy Laboratory

Energy Solutions Are Enormously Challenging

Must address all three imperatives

How Big is the Challenge?

World Energy Supply and the Role of Renewable Energy

Source: OECD/IEA, 2004

U.S. Energy Consumption and the Role of Renewable Energy

Source: Energy Information Administration, Annual Energy Outlook 2006, Table D4

Carbon and Energy Intensity

Thinking Differently... Account for Externalities

- Today's energy marketplace does not appropriately "value" certain public objectives or social goods, instead we have:
 - Price volatility
 - Serious environmental impacts
 - Underinvestment in energy innovation

Declining Energy R&D Investments...

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget
Table 10.3, Edition 25, Transportation Energy Data Book http://cta.ornl.gov/data/chapter10.shtml

Introduction Energy Nemet Reversing the Incredible, Shrinking Energy R&D Budget

Table 10.3, Edition 25, Transportation Energy Data Book

http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://crael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Laboratory

Declining Energy R&D Investments... Reflect World Oil Price Movement

Source: Daniel Kammen, Gregory Nemet Reversing the Incredible, Shrinking Energy R&D Budget
Table 10.3, Edition 25, Transportation Energy Data Book http://cta.ornl.gov/data/chapter10.shtml

Introduction Energy Nemet Reversing the Incredible, Shrinking Energy R&D Budget

Table 10.3, Edition 25, Transportation Energy Data Book

http://rael.berkeley.edu/files/2005/Kammen-Nemet-ShrinkingRD-2005.pdf

Table 10.3, Edition 25, Transportation Energy Data Book
http://cta.ornl.gov/data/chapter10.shtml

Table 10.3, Edition 25, Transportation Energy Data Book
http://cta.ornl.gov/data/chapter10.shtml

World Energy Supply and the Role of Renewable Energy

"...in the foreseeable future, the share of non-hydroelectric renewable electricity generation in the U.S. could grow to 10% or more by 2030 and to over 20% by midcentury."

PCAST Nov 2006

"Yes if" ... not... "no because."

- Newt Gingrich

Source: OECD/IEA, 2004

Technology-Based Solutions: There is no single or simple answer

- Energy efficiency
- Renewable energy
- Nonpolluting transportation fuels
- Separation and sequestration of CO₂
- Next generation nuclear energy technologies
- Transition to distributed energy systems coupled with pollution-free energy carriers

Global Resources are Plentiful

Source: http://howto.altenergystore.com/Reference-Materials/Solar-Insolation-Map-World/a43/
Pacific Northwest National Laboratory

National Renewable Energy Laboratory

Impressive Cost Reductions

Investing in the Future

Global Renewable Energy Annual Growth Rates 2000-2004

Energy-Tech Investments Percent of Total U.S. Venture Capital

Sources: Renewables 2005 Global Status Report, REN21 Clean Energy Trends 2006, Nth Power LLC

Getting to "Significance" Involves...

Source: NREL

Consistent Policies are Required for Long-Term Market Growth

- National goals
 - Biofuels: 30% of gasoline by 2030
 - Wind: 20% of electricity generation by 2030
 - Solar: Be market competitive by 2015 for Solar PV
- Infrastructure investments required to meet these goals, for example:
 - Biofuels: 30x30 analysis estimated infrastructure cost between \$8.5 and \$28.5B over 23 years

Aging Energy Infrastructure

Technology Innovation Challenges

- Wind
 - Next generation wind turbines
 - Improve energy capture by 30%
 - Decrease capital costs by 25%
- Solar photovoltaics
 - Improved performance through
 - process improvements
 - better materials
 - concentration
 - Harnessing nanostructures & new quantum effects
- Biofuels
 - Next generation biofuels
 - New feedstocks
 - Improved energy crops
 - Integrated biorefineries

Wind

Today's Status in U.S.

- 11,603 MW installed at end of 2006
- Cost 6-9¢/kWh at good wind sites*

DOE Cost Goals

- 3.6¢/kWh, onshore at low wind sites by 2012
- 7¢/kWh, offshore in shallow water by 2014

Long Term Potential

20% of the nation's electricity supply

NREL Research Thrusts

- Improved performance and reliability
- Distributed wind technology
- Advanced rotor development
- Utility grid integration

Evolution of U.S. Commercial Wind Energy

Solar

Photovoltaics and Concentrating Solar Power

Status in U.S.

PV

- 526 MW
- Cost 18-23¢/kWh

CSP

- 355 MW
- Cost 12¢/kWh

Potential:

PV

- 11-18¢/kWh by 2010
- 5-10 ¢/kWh by 2015

CSP

8.5 ¢/kWh by 2010 6 ¢/kWh by 2015

PV

- Partnering with industry
- Higher efficiency devices
- New nanomaterials applications
- Advanced manufacturing techniques

CSP

- Next generation solar collectors
- High performance storage
 National Renewable Energy Laboratory

Source: U.S. Department of Energy, IEA Updated November 8, 2006

Biofuels

Current Biofuels status

- Biodiesel 91 million gallons¹ (2005)
- Corn ethanol (Nov. 2006)
 - 106 commercial plants²
 - 5.1 billion gallon/yr. capacity²
 - 3rd Q 2006 rack price highly variable \$3.50 – 5.50/gallon of gasoline equivalent (gge)³
- Cellulosic ethanol
 - Projected commercial cost ~\$3.50/gge

Key DOE Goals

- 2012 goal: cellulosic ethanol ~\$1.62/gge
- 2030 goal: 60 billion gal ethanol (30% of 2004 gasoline)

NREL Research Thrusts

- The biorefinery and cellulosic ethanol
- Solutions to under-utilized waste residues
- Energy crops

Biofuels R&D

Technology Investment Pathways

Promise of renewable energy is profound and can be realized if we...

- Aggressively seek a global sustainable energy economy
- Accelerate investment in technology innovation
- Acknowledge and mitigate the carbon challenge with the necessary policies

It is a matter of national will and leadership

